关于2023余弦定理是什么
余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理。运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题。下面小编为大家带来2023余弦定理是什么,希望对您有所帮助!
余弦函数
余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
余弦定理
是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值。
利用余弦定理,可以解决以下两类有关三角形的问题
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两个角。
正余弦定理的应用
1.解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理
2.根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边.并常用正余弦定理实施边角转化。
3.用正余弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长。
4.应用问题可利用图形将题意理解清楚,然后用数学模型解决问题。
5.正余弦定理与三角函数、向量、不等式等知识相结合,综合运用解决实际问题。
余弦定理的推导过程
1、平面三角形证法
在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c_sinB,DC=a-BD=a-c_cosB
在Rt△ACD中,
b?=AD?+DC?=(c_sinB)?+(a-c_cosB)?
=c?sin?B+a?-2ac_cosB+c?cos?B
=c?(sin?B+cos?B)+a?-2ac_cosB
=c?+a?-2ac_cosB
2、平面向量证法
有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b)
∴c?=a·a+2a·b+b·b∴c?=a?+b?+2|a||b|cos(π-θ)
又∵cos(π-θ)=-cosθ(诱导公式)
∴c?=a?+b?-2|a||b|cosθ
此即c?=a?+b?-2abcosC
即cosC=(a2+b2-c2)/2_a_b
正弦余弦公式