高中数学怎么学习能提高效率

天天百科网 大学 64

高中数学怎么学习能提高效率

高中数学提高效率学习,其实也主要是好好注意总结易错题,防止“掉坑”。下面小编给大家整理了关于高中数学怎么提高效率的内容,欢迎阅读,内容仅供参考!

高中数学怎么学习能提高效率 第1张

高中数学怎么提高效率

高中数学要抄板书、记笔记

只有分析完题目,任课老师才会开始写板书。当然这时候也不要以为这道题目,我们已经跟着老师的思路分析听懂了,就可以不听板书,这肯定是不行的,

老师为什么要写板书?为什么一道题目讲了又讲,最后还要写板书呢?我们要知道,对于课本例题和高考模拟题,只是看会听会还远远不够,老师在课堂上写下板书,是为了让同学们明白:解答这道题目的时候,到底哪些步骤可以省略,哪些步骤非常重要。

大家都知道,高考解答题是可以拿到步骤分的,对于老师在上课时写的板书,同学们主要还是根据自己对于例题和题型的掌握情况,如果觉得有必要就抄在笔记本上,如果感觉这种题型和解题步骤已经滚瓜烂熟,感觉没有必要,那就不用记了。

高中数学应该怎么学

高中数学提高效率关注细节就是防止无谓失分。

近几年的高考趋势使得我们要思考一个问题,如果卷子比较容易,那我们能不能考高分?制胜的关键在于防止无谓失分,其中关注细节至关重要。调整不合理的解题习惯。很多同学容易范计算错误,审题不清等问题,主要就是习惯不好。如计算过于依赖心算或跳步,草稿纸上一片混乱,审题太急,不做标记等。解决的办法是通过考试发现问题,并不断调整解题习惯,其中关键是用心。

高中数学提高效率的方法

高中数学提高效率检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。

高中数学提高效率抓思维易错点,注重典型题型。

高中数学提高效率浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。

高中数学提高效率博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。

高中数学提高效率不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。

高考数学秒杀公式

1

适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。

注上述公式适合一切圆锥曲线,如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2

函数的周期性问题(记忆三个):

1、若f(x)=-f(x+k),则T=2k;

2、若f(x)=m/(x+k)(m不为0),则T=2k;

3、若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3

关于对称问题(无数人搞不懂的问题)总结如下:

1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;

2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;

3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4

函数奇偶性:

1、对于属于R上的奇函数有f(0)=0;

2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

3,奇偶性作用不大,一般用于选择填空

5

数列定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+qmS(n)可以迅速求q

6

数列的终极利器,特征根方程。(如果看不懂就算了)。首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

7

函数详解补充:

1、复合函数奇偶性:内偶则偶,内奇同外

2、复合函数单调性:同增异减

3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

8

常用数列bn=n×(2n)求和Sn=(n-1)×(2(n+1))+2记忆方法:前面减去一个1,后面加一个,再整体加一个2

9

适用于标准方程(焦点在x轴)爆强公式:k椭=-{(b)xo}/{(a)yo}k双={(b)xo}/{(a)yo}k抛=p/yo注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10

两直线垂直或平行的必杀技:已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

11

经典中的经典:相信邻项相消大家都知道。下面看隔项相消:对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!

12

△面积公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!

13

空间立体几何中:以下命题均错:1,空间中不同三点确定一个平面;2,垂直同一直线的两直线平行;3,两组对边分别相等的四边形是平行四边形;4,如果一条直线与平面内无数条直线垂直,则直线垂直平面;5,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;6,有一个面是多边形,其余各面都是三角形的几何体都是棱锥注:对初中生不适用。

14

一个小知识点:所有棱长均相等的棱锥可以是三、四、五棱锥。

15

求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。答案为:当n为奇数,最小值为(n-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n/4,在x=n/2或n/2+1时取到。

16

√〔(a+b)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)

17

椭圆中焦点三角形面积公式:S=btan(A/2)在双曲线中:S=b/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。

18

重要定理:空间向量三公式解决所有题目:cosA=|{向量a.向量b}/[向量a的模×向量b的模]|一:A为线线夹角,二:A为线面夹角(但是公式中cos换成sin)三:A为面面夹角注:以上角范围均为[0,派/2]。

19

重要公式1+2+3+…+n=1/6(n)(n+1)(2n+1);13+23+33+…+n3=1/4(n)(n+1)

20

切线方程记忆方法:写成对称形式,换一个x,换一个y。举例说明:对于y=2px可以写成y×y=px+px再把(xo,yo)带入其中一个得:y×yo=pxo+px

21

重要定理:(a+b+c)n的展开式[合并之后]的项数为:Cn+22,n+2在下,2在上

22

[转化思想]切线长l=√(d-r)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。

23

对于y=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。爆强定理的证明:对于y=2px,设过焦点的弦倾斜角为A.那么弦长可表示为2p/〔(sinA)〕,所以与之垂直的弦长为2p/[(cosA)],所以求和再据三角知识可知。(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)

24

一个重要绝对值不等式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣

25

关于解决证明含ln的不等式的一种思路:举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是Sn。解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,那么只需证an>bn即可,根据定积分知识画出y=1/x的图。an=1×1/n=矩形面积>曲线下面积=bn。

当然前面要证明1>ln2。注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。说明:前提是含ln。

26

简洁公式:向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。记忆方法:在哪投影除以哪个的模

27

一个易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!

28

离心率公式:e=sinA/(sinM+sinN)注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N。

29

椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。比如x/4+y=1求z=x+y的最值。解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!

30

重点公式:和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2

31

重要定理:直观图的面积是原图的√2/4倍。

32

三角形垂心定理:1,向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心)2,若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。

33

维维安尼定理(不是很重要),--正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角形的高。

34

一种解题思路:如果出现两根之积x1x2=m,两根之和x1+x2=n,我们应当形成一种思路,那就是返回去构造一个二次函数,再利用△大于等于0,可以得到m、n范围。

35

常用结论:过(2p,0)的直线交抛物线y=2px于A、B两点。O为原点,连接AO.BO。必有角AOB=90度

36

重要公式:ln(x+1)≤x(x>-1)该式能有效解决不等式的证明问题。举例说明:ln(1/(2)+1)+ln(1/(3)+1)+…+ln(1/(n)+1)<1(n≥2)证明如下:令x=1/(n),根据ln(x+1)≤x有左右累和右边再放缩得:左和<1-1/n<1证毕!

37

函数y=(sinx)/x是偶函数。在(0,派)上它单调递减,(-派,0)上单调递增。利用上述性质可以比较大小。

38

函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。另外y=x(1/x)与该函数的单调性一致。

39

几个数学易错点:1,f`(x)<0是函数在定义域内单调递减的充分不必要条件;2,在研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称!;3,不等式的运用过程中,千万要考虑"="号是否取到!4,研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!

40

提高计算能力五步曲:1,扔掉计算器;2,仔细审题(提倡看题慢,解题快),要知道没有看清楚题目,你算多少都没用!;3,熟记常用数据,掌握一些速算技巧;4,加强心算,估算能力;5,[检验]!。

41

重要公式:已知三角形中AB=a,AC=b,O为三角形的外心,则向量AO×向量BC(即数量积)=(1/2)[b-a]强烈推荐!证明:过O作BC垂线,转化到已知边上

42

①函数单调性的含义:大多数同学都知道若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小),但有些意思可能有些人还不是很清楚,若函数在D上单调,则函数必连续(分段函数另当别论)这也说明了为什么不能说y=tanx在定义域内单调递增,因为它的图像被无穷多条渐近线挡住,换而言之,不连续.还有,如果函数在D上单调,则函数在D上y与x一一对应.这个可以用来解一些方程.至于例子不举了.

②函数周期性:这里主要总结一些函数方程式所要表达的周期设f(x)为R上的函数,对任意x∈R(1)f(a±x)=f(b±x)T=(b-a)(加绝对值,下同)(2)f(a±x)=-f(b±x)T=2(b-a)(3)f(x-a)+f(x+a)=f(x)T=6a(4)设T≠0,有f(x+T)=M[f(x)]其中M(x)满足M[M(x)]=x,且M(x)≠x则函数的周期为2

③奇偶函数概念的推广:

(1)对于函数f(x),若存在常数a,使得f(a-x)=f(a+x),则称f(x)为广义(Ⅰ)型偶函数,且当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)

(2)若f(a-x)=-f(a+x),则f(x)是广义(Ⅰ)型奇函数,当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)

(3)有两个实数a,b满足广义奇偶函数的方程式时,就称f(x)是广义(Ⅱ)型的奇,偶函数.且若f(x)是广义(Ⅱ)型偶函数,那么当f在[a+b/2,∞)上为增函数时,有f(x1)<f(x2)等价于绝对值x1-(a+b p="" 2)<=""

④函数对称性:

(1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称(2)若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称⑤柯西函数方程:若f(x)连续或单调(1)若f(xy)=f(x)+f(y)(x>0,y>0),则f(x)=㏒ax

(2)若f(xy)=f(x)f(y)(x>0,y>0),则f(x)=xu(u由初值给出)

(3)f(x+y)=f(x)f(y)则f(x)=ax

(4)若f(x+y)=f(x)+f(y)+kxy,则f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),则f(x)=ax+b特别的若f(x)+f(y)=f(x+y),则f(x)=kx

43

与三角形有关的定理或结论中学数学平面几何最基本的图形就是三角形①正切定理(我自己取的,因为不知道名字):在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC②任意三角形射影定理(又称第一余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA③任意三角形内切圆半径r=2S/a+b+c(S为面积),外接圆半径应该都知道了吧④梅涅劳斯定理:设A1,B1,C1分别是△ABC三边BC,CA,AB所在直线的上的点,则A1,B1,C1共线的充要条件是CB1/B1A·BA1/A1C·AC1/C1B=1

44

易错点:1,函数的各类性质综合运用不灵活,比如奇偶性与单调性常用来配合解决抽象函数不等式问题;2,三角函数恒等变换不清楚,诱导公式不迅捷。

45,

易错点:3,忽略三角函数中的有界性,三角形中角度的限定,比如一个三角形中,不可能同时出现两个角的正切值为负;4,三角的平移变换不清晰,说明:由y=sinx变成y=sinwx的步骤是将横坐标变成原来的1/∣w∣倍。

46

易错点:5,数列求和中,常常使用的错位相减总是粗心算错,规避方法:在写第二步时,提出公差,括号内等比数列求和,最后除掉系数;6,数列中常用变形公式不清楚,如:an=1/[n(n+2)]的求和保留四项。

47

易错点:7,数列未考虑a1是否符合根据sn-sn-1求得的通项公式;8,数列并不是简单的全体实数函数,即注意求导研究数列的最值问题过程中是否取到问题。

48

易错点:9,向量的运算不完全等价于代数运算;10,在求向量的模运算过程中平方之后,忘记开方。比如这种选择题中常常出现2,√2的答案…,基本就是选√2,选2的就是因为没有开方;11,复数的几何意义不清晰。

49

关于辅助角公式:asint+bcost=[√(a+b)]sin(t+m)其中tanm=b/a[条件:a>0]说明:一些的同学习惯去考虑sinm或者cosm来确定m,个人觉得这样太容易出错最好的方法是根据tanm确定m.(见上)。举例说明:sinx+√3cosx=2sin(x+m),因为tanm=√3,所以m=60度,所以原式=2sin(x+60度)。

50

A、B为椭圆x/a+y/b=1上任意两点。若OA垂直OB,则有1/∣OA∣+1/∣OB∣=1/a+1/b。

高考数学易错知识点归纳总结

1、遗忘空集致误

错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2、忽视集合元素的三性致误

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

3、四种命题的结构不明致误

错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4、充分必要条件颠倒致误

错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5、逻辑联结词理解不准致误

错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:

p∨q真<=>p真或q真,

p∨q假<=>p假且q假(概括为一真即真);

p∧q真<=>p真且q真,

p∧q假<=>p假或q假(概括为一假即假);

┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

6、求函数奇偶性的常见错误

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

7、抽象函数中推理不严密致误

错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

8、函数零点定理使用不当致误

错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。

函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。

9、求函数定义域忽视细节致误

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;

(2)偶次被开放式非负;

(3)真数大于0;

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

10、带有绝对值的函数单调性判断错误

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。