高考数学高分诀窍(详细)
高考的本质还是在分数,高考录取的关键一样在于分数,所以准备高考的目的是为了分数,学好数学的目的也是为了分数。以下是小编整理的高考数学高分诀窍,希望可以提供给大家进行参考和借鉴。
高考数学高分诀窍
“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
数学答题技巧
1.妙用数学思想
数学客观题有60分,它的特点是只要答案,不要过程,有人戏称为不讲理的题,正因为不要写出道理,就要讲究解题策略,而不必每题都当解答题去解。考生可以动用三大法宝:排除法、特殊值法、数形结合法。
如已知|a|1,|b|1,|c|1,则ab+bc+ca与-1的大小关系是______。
用特殊值法,取a=b=c=0,立得ab+bc+ca-1。若把它当成解答题来解,有些学生可能不会做,或者即使会做也要浪费好多时间。
2.力求最简解法
有的问题有简捷的解法,但有些学生往往拿到题目后不认真思考,随便想到一种方法就解,结果要么是繁得做不下去,要么解题过程中出现运算错误,即使勉强解出结果,却用了大量时间。
因此,考生拿到题目不要急于落笔,先找出比较简单的方法再解题,既能准确算对,又能节省时间,否则会陷于欲进不能、欲罢不忍的尴尬状态。由繁变简,关键在于不墨守成规。改变一下思维方式,可以使问题的解答变得异常简单。
高中数学公式
抛物线公式
y = ax^2+bx+c 就是y等于ax的平方加上b
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
面积公式
圆的体积公式 4/3(pi)(r^3)
圆的面积公式 (pi)(r^2)
圆的周长公式 2(pi)r
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c'__h
正棱锥侧面积 S=1/2c__h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi__r2
圆柱侧面积 S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l
弧长公式 l=a__r a是圆心角的弧度数r>0 扇形面积公式 s=1/2__l__r
锥体体积公式 V=1/3__S__H 圆锥体体积公式V=1/3__pi__r2h
斜棱柱体积 V=S'L 注:其中S'是直截面面积L是侧棱长
柱体体积公式 V=s__h 圆柱体V=pi__r2h
椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式
椭圆面积公式:S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
三角函数公式
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
导数公式
y=f(x)=c (c为常数) 则f'(x)=0
f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x(x>0)
f(x)=tanx f'(x)=1/cos^2x
f(x)=cotx f'(x)=-1/sin^2x
导数运算法则
加法法则:(f(x)-g(x))'=f'(x)-g'(x)
减法法则:(f(x)+g(x))'=f'(x)+g'(x)
乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2